
International Journal of Research in Engineering and Science (IJRES) 

ISSN (Online): 2320-9364, ISSN (Print): 2320-9356 

www.ijres.org Volume 3 Issue 12 ǁ December. 2015 ǁ PP.59-61 

www.ijres.org                                                                59 | Page 

Extension of Some Common Fixed Point Theorems using 

Compatible Mappings in Fuzzy Metric Space 
 

Vineeta Singh 
(S.A.T.I., Vidisha) S. K. Malhotra (Govt. Benazir College, Bhopal) Subject Classification 54H25, 47H10 
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I. Introduction 
The concept OF Fuzzy sets was investigated by Zadeh [1]. Here we are dealing with the fuzzy metric space 

defined by Kramosil and Michalek [ 2] and modified by George and Veeramani [3]. Grabiec[ 4] has also proved 

fixed point results for fuzzy metric space with different mappings. Singh and Chauhan[5] gave the results using 

the concept of compatible mappings in Fuzzy metric space. Jungck [ 6] introduced the concept of compatible 

mapping of type (A) and type (B)In fuzzy metric space. Singh and jain [7] proved the fixed point theorems in 

fuzzy metric space using the concept of compatibility and semicompatibily. Sharma[8] also done work on 

compatible mappings. 

 

II. FUZZY METRIC SPACE 
Definition[2 ]:  A 3-tuple (X,M, *) is said to be a fuzzy 

metric space if X is an arbitrary set, * is a continuous t-norm 

and M is a fuzzy set on X
2
 × [0,  ] satisfying the following conditions 

(f1) M(x, y, t) > 0 

(f2) M(x, y, t) = 1 if and only if x = y 

(f3) M(x, y, t) = M(y, x, t); 

(f4) M(x, y, t) *M(y, z, s)  ≤ M(x, z, t + s), 

(f5) M(x, y, . ) : (0,  ) → (0, 1] is continuous. 

x,y,z   X and t,s > 0 

 

Then M is called a fuzzy metric on X. Then 

M(x, y, t) denotes the degree i.e. of nearness between x and y 

with respect to t. 

 

Compatible and Non compatible mappings: Let A and S be mapping from a fuzzy metric space (X,M, *) 

into itself.Then the mappings are said to be compatible if 

n
Lim  M(ASxn,SAxn,t) = 1, t >0, 

whenever {xn} is a sequence in X such that 

n
Lim  Axn =  

n
Lim  x   X 

from the above definition it is inferred that A and S are non compatible maps from a fuzzy metric space (X,M,*) 

into itself if 

n
Lim  Axn =  

n
Lim   Sxn = x   X 

but either 

n
Lim  M(ASxn,SAxn,t) ≠ 1, or the limit does not exist. 

 

Main Results: 

Theorem:-Let A,B,S,T be self maps  of complete fuzzy metric space (X,M,*) such that a*b = min(a,b) for some 

y in X. 

(a) A(X)  T(X),B(X)  S(X),T(Y)  A(Y) 

(b) S and T are continuous. 
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(c) [A,S],[B,T] are compatible pairs of maps 

(d) For all x,y in X ,k  (0,1) ,t> 0. 

M(Ax,By,KT)≥ min { M(Sx,Ty,t),M(Ax,Sx,t),M(By,Ty,t),M(By,Sx,t),M(Ax,Ty,t),M(Ay,Tx,t)} 

For all x,y   X LIM n M(x,y,t)  1 then A,B,S,T have a common fixed point in X. 

 

Proof:- Let x0 be an arbitrary point inX. Construct a sequence {yn} in X such that y2n-1= Tx2n-1=Ax2n-2 

And y2n= Sx2n=Bx2n-1=Tx2n , for n= 0,1,2...... 

Put x= x2n, y= x2n+1 

M(y2n+1,y2n+2,kt) = M (Ax2n,Bx2n+1,kt)  

≥ min {(M(Sx2n, Tx2n+1,t),M((Ax2n,Sx2n,t),M(Bx2n+1,Tx2n+1,t),M(Tx2n,Ax2n+1,t),M(Ax2n,Tx2n+1,t),M(Bx2n+1, 

Sx2n,t)} 

≥ min{M(y2n,y2n+1,kt),M(y2n+1,y2n+2,t),1} 

Which implies 

{M(y2n+1,y2n+2,kt) ≥   M(y2n,y2n+1,t). 

In general 

{M(yn,yn+1,kt) ≥   M(yn-1,yn,t)                                                                                                                                 (1) 

To prove that {yn} is a Cauchy sequence we will prove (b) is true for all n≥n0  and every  mN 

{M(yn,yn+m,t) >  1 -                                                                                                                                             (2) 

Here we use induction method 

From(1) we have 

M(yn,yn+1,t) ≥   M(yn-1,yn,t /k) ≥   M((yn-2,yn-1,t/k
2
)   ≥   ........ ≥   M(  y0,y1,t/k

n
)  1 as n    

i.e for t> 0,     (0,1). We can choose n0    N, such that 

{M(yn,yn+1,t) >  1 -                                                                                                                                              (3) 

Thus (2) is true for m=1.Suppose (2) is true for m then will show that it is true for m+1. By the definition of 

fuzzy metric space, we have 

M(yn,yn+m+1,t) ≥   min{M(yn,yn+m,t/2),M(yn+m,yn+m+1,t/2)} >  1 -          

Hence(2) is true for m+1.Thus {yn} is a Cauchy sequence.By completeness of (X,M,*) ,{ yn} Converge ( 

Using (3), we have  M(ASx2n,SAx2n  ,t/2  )  1 

M(SAx2n,Sz,t) ≥ min{M(ASx2n,SAx2n  ,t/2 ), M(SAx2n,Sz,t/2) }> 1 -  

For  all n  ≥n0  

Hence  ASx2n  Sz = TSx2n                                                                                                                                 (4) 

Similarly 

BTx2n-1  Tz = ATx2n-1                                                                                                                                        (5) 

Now put x= Sx2n and y = Tx2n-1 

 

M(ASx2n, BTx2n-1,kt) ≥ min { M (S
2
x2n, T

2
x2n-1,t),M(ASx2n, S

2
x2n,t),M(BTx2n-1, T

2
x2n-1,t),M(BTx2n-1, 

S
2
x2n,t),M(ASx2n, T

2
x2n-1,t),M(TSx2n,ATx2n-1,t)} 

Taking limit as n   and using (4) and (5) 

We get M(Sz,Tz,kt) ≥M(Sz,Tz,t), which implies  

Sz = Tz                                                                                                                                                                   (6) 

Now put x=y and y= Tx2n-1 

M(Ay,BTx2n-1,kt) ≥ min{M(Sy, T
2
x2n-1,t),M(Ay,Sy,t),M( BTx2n-1,Sy,t),M(Ay, T

2
x2n-1,t),M(Ty,ATx2n-1,T)} 

Taking the limit as n   and using (5) and (6) we get 

Az=Tz                                                                                                                                                                    (7) 

Now using (6) and (7) 

M(Az,Bz,kt)  ≥ min{M(Sz,Tz,t),M(Az, Sz,t),M(Bz,Tz,t),M(Bz,Sz,t),M(Az,Tz,t),M(Az,Tz,t) 

= min{M(Tz,Tz,t),M(Az,Az,t),M(Az,Bz,t),M(Az,Bz,t),M(Az,Az,t),M(Az,Bz,t)} 

≥M(Az,Bz,t) 

Which implies Az=Bz 

Using (6),(7) and (8) 

We get 

Az=Bz=Sz=Tz 

Now 

M(Ax2n,Bz,kt) ≥min{ M(Sx2n,Tz,t),M(Ax2n,Sx2n,t),(Bz,Tz,t),M(Bz,Sx2n,t),M(Ax2n,Tz,t),M(Tx2n,Az,t)} 

Taking the limit as n   and using (9) we get 

Z =Bz 

Thus z is common fixed point of A,B,S,T. 

For uniqueness let w be another common fixed point then we have 
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M(Az,Bw,kt) ≥min{M(Sz,Tw,t),M(Az,Sz,t),M(Bw,Tw,t),M(Bw,Sw,t),M(Az,Tw,t),M(Tz,Aw,t)} 

i.e. M(z,w,kt) ≥M(z,w,t) 

hence z =w this completes the proof. 

 

III. Conclusion 

Here we proved the theorem using the notion of compatibility without exploiting the condition of t-norm. 
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